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Towards a statistical theory of finite Fermi systems and compound states: Random two-body
interaction approach
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The model of Fermi particles with random two-body interaction is investigated. This model allows one to
study the origin and accuracy of statistical laws in few-body systems, the role of interaction and chaos in
thermalization, the Fermi-Dirac distribution for quasiparticles with spreading widths, matrix elements of ex-
ternal fields, and enhancement of weak perturbation in chaotic compound E&it@83-651%96)02506-§

PACS numbd(s): 05.45+b, 31.25-v, 31.50+w, 32.30—r

INTRODUCTION two-body interaction are chosen as random variables distrib-
uted according to a Gaussian law with zero mean and the
As is known, excited states in many-body systems such agarianceV. Therefore our model has three independent pa-
compound nuclei, rare-earth atoms, molecules, atomic clugametersn, m, andV,/d.
ters, quantum dots in solids, etc. are very complicéteta-
otic” ) and can be described via statistical methods. There are STRUCTURE OF THE HAMILTONIAN MATRIX
two major approaches. The first is based on random matrix The basis of our Hamiltonian matrix is chosen to corre-
theory(see, e.g|1]). This approach is very general in nature spond to the products of single-particle orbitals ordered by
and therefore it does not describe many important propertiegcreasing many-body unperturbed energies. Therefore with-
of realistic many-body systems, its prediction being limitedoyt interaction the matrix is diagonal, with increasing ele-
to level statistics, localization properties of eigenstates, anghents. The sizeN of the RTBI matrix is given by
the like. The other approach is based on direct numericg\— cm— mi/[n!(m—n)!] and is exponentially large for
investigations of the given particular system. For example|, qen andm. Due to the two-body character of the inter-
the results of direct diagonalization of the Hamiltonian ma-4tion the matrix elements are zero between those basis
trix for the rare-earth Ce atom have been compared Witlyiaies which differ by more than two orbitals. Therefore the
statistical theory of compound stafe. A similar study has o mijtonian matrix is essentially sparse with the sparsity
been performed for the-d shell model pf a complex nucleus (ratio of nonzero elements to the total numb&) given by
[3] where the problem of thermalization has also been con§:[1+n(m_ n)+n(n—1)(m—n)(m—n—1)/4]/N. At
sidered. Quite obviously with thls_second approach, it is Verxargen,m the sparsity is exponentially smadi- exp(—n). In
hard(e.g., due to the lack of statistjct draw general con- 4 e numbeN,=m?(m— 1)?/4 of independent variables
clusions concerning the accuracy of statistical [aws in SYSiy,mper of pair interactionsin the model is even smaller
tems with a finite numbers of particles, and the conditions fo'ihan the number of nonzero Hamiltonian matrix elements
their applicability. . There are three types of interactions between many-body
Here we suggest an “intermediate” approach based on @a16q:  the  diagonal interaction which  contains

rs:mple matthlfmgtlct:al model tthlF]h randct)r_n 'ntetracz'?n’tWh'Ch'Eim:n(n—l)/2 two-body terms, the interaction between
OWever, takes Into account the most important Tealures Oiaiaq \yhich differ by one orbital witky,;=n—1 terms, and

many-body systems such as single-particle orbitals, WOthe interaction between states which differ by two orbitals

bodg mt;eracgog, art1d thf[a_ E’S%I;I;eruple. In ?#rtrtr;]odel Ofwith kint=1. Finally, distant many-body states which differ
random fwo-pody Interactio We assume thatthe sys- by more than two orbitals have zero matrix elements. Thus

t(almvx(;i?r??Stz ohbllzerml partrllcéi;itw:lci:hnc?né)ccupy ci[rbr:z- i the Hamiltonian matrixd;; has a large and increasing diag-
as 0 double occupa ension 10 BOSE SYSIEMS IS | plus sparse bandlike structure with a decrease of off-

stralgh_tforward. As an example, the energies of orbitals arediagonal elements as a function of the distaficej| from
taken in the form

the diagonal.
1 In what follows we consider a particular case which can
€,=d| a+ =) a=1,2,...m, D be used to describe the Ce atom=11, n=4 (therefore

N=330),d=1\V,=0.12 (the two last parameters are given
in eV). Direct investigation of this atonfsee details if2])

where the second term is introduced in order to avoid th X -
as shown that it can be treated as a very chaotic system.

degeneracy of many-particle states. Matrix elements of th
ENERGY SPECTRUM AND EIGENSTATES
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type, providedn>n> 1. Our numerical data show that in the 10 —ea—a :
RTBI model in spite of the small number of particles the ) | E——
DOS is quite close to a Gaussian wifE)=25.1 and sl N Lz Io=3; T=0.87; =475

o=5.7. Another commonly discussed characteristic of the
spectrum is the level spacing distribution; in our model it is
well described by the famous Wigner-Dyson law. This fact is 06}
also in agreement with old studi¢é] of some two-body
interaction modelgsee also references [iB]). However, our
interest goes beyond the DOS and spectrum statistics.

A quantity of relevant interest is the so-called spectral
local density of states or strength function. It is defined by 02t
the weightw(E,Ej)=|Cj2| of a particular basis component i
j=1,2,..N in the eigenstates with an energy closeBp

04

0.0

according to the relation o 2 4 s i 10
o
. W(E1E]) 2
p(J.E)= - Db > IC/(E)[?6(E-E)) ). (2 FIG. 1. Distribution of occupation numbers for the excitation
r

energy SE=1.63 averaged over an ensemble of five Hamiltonian

. . . . _matrices. The full and dotted lines are numerical solutions of Egs.
Here D is the local mean level spacing. The width of this (3) and (6) with T',=0 andT",=3, respectively. The circles and

function in energyE is proportional to the effective number s, ,ares give results of the direct computation of average occupation
of components in the expansion of an unperturbed basis stalg npers with and without interaction, respectively.

in terms of exact eigenstates. In nuclear physics, this func-
tion is usually assumed to have the Breit-Wigner form,gccypation numbers; for the orbitals. In the mean-field

p(i,E)~[(E—E))?+T /4] * (the relevance of this function  approximation these quantities can be obtained from the fol-
to ergodicity and chaos is studied [idi]). According to our  |owing set of equations:
numerical results, in the center of the spectryny N/2) the

spreading width is equal td.~1.0. One should note that m m m

close to the edge=1,N, the symmetric form of the distri- 2 Na=", 21 €Nyt Zﬂ Vepgnanpg | =E, (3
bution p(j,E) is strongly distorted. However, the width of “ “ “

the distribution itself changes slightly. What is more impor- _ _ ~ -1

tant, the tails of the functiop(j,E) decay much faster than Na=n(ex) =[1+expea—p)/T] @
in the Breit-Wigner law. This is the consequence of the m

bandlike structure of the Hamiltonian matrix. Both the value <= 6a+< > Vaﬁnﬁ> _ (5)
of I' . and the fast decay of the tails are in agreement with Ce B=1

atom calculation$2].

The localization lengtiinumber of principal components [n our case, the average interactiov,s) is zero; therefore
of the eigenstat¢scan be defined through the relation We can omit the interaction term i) and(5). On the other
| ~exp(S), whereS is the statistical entropy of individual hand, there exist other important effects of the interaction
eigenstatessee, e.g.[8]). One should note that in spite of Which appear beyond the mean-field approximation; namely,
the Comp|ete|y random character of the interaction, the |owlhe interaction leads to a Spreading width for the basis states
est states turn out to be quite simple, containlingl basis and for the single-particle orbitald’(). It also results in a
components. This can be explained by the low density ofhift of average energieg,, = €,+ de,. According to our
states near the ground state. The localization legta ~ numerical data, the magnitudég,, are smaller thai', and
maximal in the centeE~(E) of the energy band and, ac- vanish in the meande,<0 for low orbitals, 5e,>0 for
cording to our numerical data, can be well described by thdligh orbitals, andse,~0 near the centgr For this reason,
Gaussian functiom=Aexg — (E—(E))%(26%)] with A~135 we will take into account the effect of the spreading width
ando~5.45. Thus in the center of the spectrum the numbef « only.
of principle components is about 100, which is again very Instead of(4), by averaging the Fermi-Dirac distribution
close to the results of direct calculations for the Ce afgin ~ N(€) over the interval’,,:

€, I ,12
STATISTICAL TREATMENT OF FINITE FERMI a:f n(g)%
SYSTEMS €y—T /2 r,
As is known, quantum statistical laws are derived for sys- . ll 1+exd (e, + T /2= p)/2T] 5
tems with an infinite number of degrees of freedom, or for S TT, n 1+exd(e,— ' f2— p)/2T] ) ©

systems in a thermostat. From this point of view, it is of

importance to study how statistical laws appear in systemse now introduce the occupation numbéfs which take
with a finite number of particles. Below, we show that in theinto account the finite spreading width of “quasiparticles.”
RTBI model one can introduce a reasonably accurate statisn the limit ' ,=0 the expression(4) with n,=n(e,) is
tical description based on such macroscopic characteristioggcovered. The numerical solution of E¢3) and(6) is pre-

as the temperatur€, the chemical potentigk, and average sented in Fig. 1. In order to reveal the influence of the
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spreading widthl" ,, two curves are given for comparison 0.01 - :
with ' ,=0 andI' ,=3.0. The latter value of , was delib- 3
erately taken larger than the spreading width of basic com- 0,008 1 . 3
ponentsl’.;~1.0 in order to elucidate the effect bf,. The ’
temperaturel and chemical potentigk are calculated from s
the above Egs.3) and (6) at fixed excitation energy 0.006 1 P ¥
SE=E—E;,. We found that for smalbE the temperature
is quite different for different values df ,. Surprisingly, in 0.004 1 . r
spite of this, the two “theoretical” curves practically coin-
cide. This means that the temperature mimics the statistical 0.002 1
effect of the interaction, a phenomenon far from being ;
trivial.

The average occupation numbers directly computed from 0.0 0 1(')0 200 3(')0
exact eigenstates are shown in Fig. 1 with circles. One can n,

see that even for four particles the actual distribution of oc-

cupation numbers can be approximately described by the sta- FIG. 2. Mean square matrix elemeétcalculated forn; =55,
tistical Fermi-Dirac distribution. However, there is a clear a=4, and=5 as a function oh,. Averaging over 100 Hamil-
deviation which indicates that for the chosen parameters th®nian matrices with different realizations of random two-body in-
thermalization is not complete. Numerical data show that theeraction has been made. The dots correspond to the direct numeri-
deviation disappears with increasing excitation enefgy cal computation; the solid line represents the statistical
while it increases when the perturbatidly decreases. The approximation(7).

latter effect has also been observed in & nuclear shell where _ d — (A=A ). H
model[ 3] where the relevance of chaos to the thermalizatio Wap=€a~ €g AN Qug=(n; n.“( Ng)n). ere
was studied in a different approach. We have to stress thg € sum runs over many-body basis components W’“ﬂ

the equilibrium distribution, or “thermalization,” in this andw,, being the weights of these components in the states
few-particle system is due to the interaction which “chaoti-n,; andn, [see Eq(2)]. If we know the shape of the strength
cally” mixes neighboring basis states with different occupa-function w, this sum can be replaced by an integral and
tion numbers. To demonstrate this, we plot in Fig. 1 theexplicitly evaluated. In particular, whem is of Breit-Wigner
occupation numbers for the same system with no interactiotype, the final expression for the MSME has also the Breit-
(Vp=0). Their distribution has nothing to do with the Wigner form(see details if2]).

Fermi-Dirac distribution: it is singular and for some values In order to check the accuracy of the above expres&ipn

of 5E even not monotonic. in the RTBI model, we have directly calculatf@“gnl) for

a=4, B=5 (transition from the ground state to the nearest
one, and different values ofi; andn,. To reduce fluctua-
tions, an averaging over a number of realizations of the
In a few body system one could expect quite Hamiltonian matrix has been done. The direct comparison
strong correlations between occupation numbers of differwith the analytical predictiori7) shows a quite good agree-
ent orbitals. We have found, instead, that typically thement. In particular, the positions of the maxima as well as
correlations are weak; even for close orbitals the ratiche widths of§i”2”1) in dependence on; andn, are well
(ny)(Ng)/(n,ng)~0.82. Only when occupation numbers are described by7). However, quite unexpected deviations have
small can the correlations be very strong. been discovered which were found to be generic in the
model. A typical example is given in Fig. 2 where a clear
difference is seen between the statistical approximafon
MATRIX ELEMENTS OF AN EXTERNAL and numerical data. The absolute difference is maximal at
PERTURBATION the center of thef dependence; however, in the tails the

The main problem in the compound state theory is thdelative difference is even larger. A thorough study of this
calculation of effects of an external perturbation. Since maPhenomenoitsee details ii10]) has revealed a very intrigu-
trix elements of any single-particle operator can be expressdd fact: the origin of this effect is in the underlying corre-

in terms of elementary density matrix operatﬁr@za*a lations induced by the two-body nature of the interaction.
which transfer the particle from the orbitgl to the or%ital Similar correlations were observed in the model of random

separable interactiori1,12. Full analytical treatment of the
orrelations for the RTBI model is given [10]. In particu-
ar, for the tails the contribution of the correlation term

to the total MSME &,5ta1= €corr T+ €stat, NAs been esti-

CORRELATIONS BETWEEN OCCUPATION NUMBERS

«, the main interest is in statistical properties of matrix ele-
mentsp, ;. Below, we use a recent approach developed i
[9] (see also the study of the Ce atom [i&]) where the

following expression for the mean square matrix elementgcorr

(MSME’s) gi”g“l)zﬁg‘gnl)ﬁ between compound statés,| mated as
and{n,| has been derived: Re Ecorr _ (n=2)(m—-n—1)(m—n+2) ®
B gstat n(m_n)(m_n+3)
E(n§n1>=Q BE Wy (E;+ 0,5 Wy (E;) 7) whereé,; . is very close to that given by the expressiah
a ap< 1 a 2

In the maximum of¢, the estimate fom—n>1 reads as
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érotall éstar~2—2mI[n(m—n)]. The remarkable result is found that the two-body interaction gives rise to thermaliza-
that these correlations do not decrease with an increase tibn and that the statistical effect of the interaction can be

number of particles and number of orbitalsn. Numerical imitated by an increase of temperature. The study of corre-
data for larger values afi=7 andm=14 (with N=3432) lations between occupation numbers has revealed sufficiently

have confirmed this prediction. weak correlations even for a small number=(4) of par-
ticles. This justifies the approximation of independent par-
ENHANCEMENT OF A WEAK PERTURBATION IN ticles which is typically used in the description of complex
CHAOTIC MANY-BODY SYSTEMS compound states. To describe the effect of spreading widths

of orbitals, the generalization of the Fermi-Dirac distribution
The RTBI model allows for the study of a very important yas suggested.

effect, namely, the enhancement of a weak perturbatipn The numerical and analytical treatment has shown that the
which takes place in systems with chaotic compound statesstatistical theory reproduces quite well the global structure of
This effect is proportional to the mixing coefficient matrix elements of an external perturbation between com-
7=(N1W|n,)/A,, where A;,=E,—E, is the spacing be- pound states. On the other hand, underlying correlations
tween the neighboring energy levels of compound stateshave been discovered which are induced by the two-body
Since the spacings for strongly excited states of many-bodgharacter of the interaction, even if the latter is completely
systems are exponentially small;,~exp(=n), one could random. This phenomenon results in serious deviations from
expect strong enhancement of the perturbation in comparisaie statistical predictions for matrix elements between com-
with  the  single-particle  mixing  defined by pound states. At the moment, all consequences of these cor-
7]S=<a|\7V|ﬁ>/(ea— €g). The possibility of the enhancement relations are still not understood; however, preliminary data
in compound nuclei was pointed out 13,14 and consid- [15] show that they can lead to the so-called gross structure
ered in detail in a recent revielil2]. However, such non- (sharp peaKsin a cross section.
trivial effects as repulsion between energy levels and the In conclusion, our results show that the TBRI model dis-
above discussed correlations may have strong influence atussed above can be a very useful tool in the study of many
the enhancement. Our preliminary results show that even fdmportant problems of the statistical physics of complex
four particles the enhancement in the RTBI model does exisguantum systems.
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