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The model of Fermi particles with random two-body interaction is investigated. This model allows one to
study the origin and accuracy of statistical laws in few-body systems, the role of interaction and chaos in
thermalization, the Fermi-Dirac distribution for quasiparticles with spreading widths, matrix elements of ex-
ternal fields, and enhancement of weak perturbation in chaotic compound states.@S1063-651X~96!02506-8#
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INTRODUCTION

As is known, excited states in many-body systems such as
compound nuclei, rare-earth atoms, molecules, atomic clus-
ters, quantum dots in solids, etc. are very complicated~‘‘cha-
otic’’ ! and can be described via statistical methods. There are
two major approaches. The first is based on random matrix
theory~see, e.g.,@1#!. This approach is very general in nature
and therefore it does not describe many important properties
of realistic many-body systems, its prediction being limited
to level statistics, localization properties of eigenstates, and
the like. The other approach is based on direct numerical
investigations of the given particular system. For example,
the results of direct diagonalization of the Hamiltonian ma-
trix for the rare-earth Ce atom have been compared with
statistical theory of compound states@2#. A similar study has
been performed for thes-d shell model of a complex nucleus
@3# where the problem of thermalization has also been con-
sidered. Quite obviously with this second approach, it is very
hard ~e.g., due to the lack of statistics! to draw general con-
clusions concerning the accuracy of statistical laws in sys-
tems with a finite numbers of particles, and the conditions for
their applicability.

Here we suggest an ‘‘intermediate’’ approach based on a
simple mathematical model with random interaction, which,
however, takes into account the most important features of
many-body systems such as single-particle orbitals, two-
body interaction, and the Pauli principle. In our model of
random two-body interaction~RTBI! we assume that the sys-
tem consists ofn Fermi particles which can occupym orbit-
als with no double occupancy~extension to Bose systems is
straightforward!. As an example, the energies of orbitals are
taken in the form

ea5dS a1
1

a D , a51,2, . . . ,m, ~1!

where the second term is introduced in order to avoid the
degeneracy of many-particle states. Matrix elements of the

two-body interaction are chosen as random variables distrib-
uted according to a Gaussian law with zero mean and the
varianceV0 . Therefore our model has three independent pa-
rameters:n, m, andV0 /d.

STRUCTURE OF THE HAMILTONIAN MATRIX

The basis of our Hamiltonian matrix is chosen to corre-
spond to the products of single-particle orbitals ordered by
increasing many-body unperturbed energies. Therefore with-
out interaction the matrix is diagonal, with increasing ele-
ments. The sizeN of the RTBI matrix is given by
N5Cn

m5m!/ @n!(m2n)! # and is exponentially large for
largen andm. Due to the two-body character of the inter-
action the matrix elements are zero between those basis
states which differ by more than two orbitals. Therefore the
Hamiltonian matrix is essentially sparse with the sparsity
~ratio of nonzero elements to the total numberN2) given by
s5@11n(m2n)1n(n21)(m2n)(m2n21)/4#/N. At
largen,m the sparsity is exponentially small,s;exp(2n). In
fact, the numberN25m2(m21)2/4 of independent variables
~number of pair interactions! in the model is even smaller
than the number of nonzero Hamiltonian matrix elements.

There are three types of interactions between many-body
states: the diagonal interaction which contains
kint5n(n21)/2 two-body terms, the interaction between
states which differ by one orbital withkint5n21 terms, and
the interaction between states which differ by two orbitals
with kint51. Finally, distant many-body states which differ
by more than two orbitals have zero matrix elements. Thus
the Hamiltonian matrixHi j has a large and increasing diag-
onal plus sparse bandlike structure with a decrease of off-
diagonal elements as a function of the distanceu i2 j u from
the diagonal.

In what follows we consider a particular case which can
be used to describe the Ce atom:m511, n54 ~therefore
N5330),d51,V050.12 ~the two last parameters are given
in eV!. Direct investigation of this atom~see details in@2#!
has shown that it can be treated as a very chaotic system.

ENERGY SPECTRUM AND EIGENSTATES

As was found in@4# ~see also@5#!, for two-body random
interaction the density of states~DOS! should be of Gaussian
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type, providedm@n@1. Our numerical data show that in the
RTBI model in spite of the small number of particles the
DOS is quite close to a Gaussian witĥE&525.1 and
s55.7. Another commonly discussed characteristic of the
spectrum is the level spacing distribution; in our model it is
well described by the famous Wigner-Dyson law. This fact is
also in agreement with old studies@6# of some two-body
interaction models~see also references in@5#!. However, our
interest goes beyond the DOS and spectrum statistics.

A quantity of relevant interest is the so-called spectral
local density of states or strength function. It is defined by
the weightw(E,Ej )5uC̄j

2u of a particular basis component
j51,2,..,N in the eigenstates with an energy close toE,
according to the relation

r~ j ,E!5
w~E,Ej !

D
5K (

r
uCj~Er !u2d~E2Er !L . ~2!

HereD is the local mean level spacing. The width of this
function in energyE is proportional to the effective number
of components in the expansion of an unperturbed basis state
in terms of exact eigenstates. In nuclear physics, this func-
tion is usually assumed to have the Breit-Wigner form,
r( j ,E);@(E2Ej )

21Gc
2/4#21 ~the relevance of this function

to ergodicity and chaos is studied in@7#!. According to our
numerical results, in the center of the spectrum (j'N/2) the
spreading width is equal toGc'1.0. One should note that
close to the edgesj51,N, the symmetric form of the distri-
bution r( j ,E) is strongly distorted. However, the width of
the distribution itself changes slightly. What is more impor-
tant, the tails of the functionr( j ,E) decay much faster than
in the Breit-Wigner law. This is the consequence of the
bandlike structure of the Hamiltonian matrix. Both the value
of Gc and the fast decay of the tails are in agreement with Ce
atom calculations@2#.

The localization length~number of principal components
of the eigenstates! can be defined through the relation
l;exp(̂S&), whereS is the statistical entropy of individual
eigenstates~see, e.g.,@8#!. One should note that in spite of
the completely random character of the interaction, the low-
est states turn out to be quite simple, containingl'1 basis
components. This can be explained by the low density of
states near the ground state. The localization lengthl is
maximal in the centerE'^E& of the energy band and, ac-
cording to our numerical data, can be well described by the
Gaussian functionl5Aexp@2(E2^E&)2/(2s2)# with A'135
ands'5.45. Thus in the center of the spectrum the number
of principle components is about 100, which is again very
close to the results of direct calculations for the Ce atom@2#.

STATISTICAL TREATMENT OF FINITE FERMI
SYSTEMS

As is known, quantum statistical laws are derived for sys-
tems with an infinite number of degrees of freedom, or for
systems in a thermostat. From this point of view, it is of
importance to study how statistical laws appear in systems
with a finite number of particles. Below, we show that in the
RTBI model one can introduce a reasonably accurate statis-
tical description based on such macroscopic characteristics
as the temperatureT, the chemical potentialm, and average

occupation numbersni for the orbitals. In the mean-field
approximation these quantities can be obtained from the fol-
lowing set of equations:

(
a51

m

na5n, (
a51

m

eana1K (
a>b

m

VabnanbL 5E, ~3!

na[n~ea!5@11exp~ ẽa2m!/T#21, ~4!

ẽa5ea1K (
b51

m

VabnbL . ~5!

In our case, the average interaction^Vab& is zero; therefore
we can omit the interaction term in~3! and~5!. On the other
hand, there exist other important effects of the interaction
which appear beyond the mean-field approximation; namely,
the interaction leads to a spreading width for the basis states
and for the single-particle orbitals (Ga). It also results in a
shift of average energies,ẽa5ea1dea . According to our
numerical data, the magnitudesdea are smaller thanGa and
vanish in the mean (dea,0 for low orbitals,dea.0 for
high orbitals, anddea'0 near the center!. For this reason,
we will take into account the effect of the spreading width
Ga only.

Instead of~4!, by averaging the Fermi-Dirac distribution
n(e) over the intervalGa :

na5E
ea2Ga/2

ea1Ga/2

n~e!
de

Ga

512
T

Ga
lnF11exp@~ea1Ga/22m!/2T#

11exp@~ea2Ga/22m!/2T#G , ~6!

we now introduce the occupation numbers~6! which take
into account the finite spreading width of ‘‘quasiparticles.’’
In the limit Ga50 the expression~4! with na5n(ea) is
recovered. The numerical solution of Eqs.~3! and~6! is pre-
sented in Fig. 1. In order to reveal the influence of the

FIG. 1. Distribution of occupation numbers for the excitation
energydE51.63 averaged over an ensemble of five Hamiltonian
matrices. The full and dotted lines are numerical solutions of Eqs.
~3! and ~6! with Ga50 andGa53, respectively. The circles and
squares give results of the direct computation of average occupation
numbers with and without interaction, respectively.
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spreading widthGa , two curves are given for comparison
with Ga50 andGa53.0. The latter value ofGa was delib-
erately taken larger than the spreading width of basic com-
ponentsGc'1.0 in order to elucidate the effect ofGa . The
temperatureT and chemical potentialm are calculated from
the above Eqs.~3! and ~6! at fixed excitation energy
dE5E2Emin . We found that for smalldE the temperature
is quite different for different values ofGa . Surprisingly, in
spite of this, the two ‘‘theoretical’’ curves practically coin-
cide. This means that the temperature mimics the statistical
effect of the interaction, a phenomenon far from being
trivial.

The average occupation numbers directly computed from
exact eigenstates are shown in Fig. 1 with circles. One can
see that even for four particles the actual distribution of oc-
cupation numbers can be approximately described by the sta-
tistical Fermi-Dirac distribution. However, there is a clear
deviation which indicates that for the chosen parameters the
thermalization is not complete. Numerical data show that the
deviation disappears with increasing excitation energydE,
while it increases when the perturbationV0 decreases. The
latter effect has also been observed in thes-d nuclear shell
model@3# where the relevance of chaos to the thermalization
was studied in a different approach. We have to stress that
the equilibrium distribution, or ‘‘thermalization,’’ in this
few-particle system is due to the interaction which ‘‘chaoti-
cally’’ mixes neighboring basis states with different occupa-
tion numbers. To demonstrate this, we plot in Fig. 1 the
occupation numbers for the same system with no interaction
(V050). Their distribution has nothing to do with the
Fermi-Dirac distribution: it is singular and for some values
of dE even not monotonic.

CORRELATIONS BETWEEN OCCUPATION NUMBERS

In a few body system one could expect quite
strong correlations between occupation numbers of differ-
ent orbitals. We have found, instead, that typically the
correlations are weak; even for close orbitals the ratio
^n̂a&^n̂b&/^n̂an̂b&'0.82. Only when occupation numbers are
small can the correlations be very strong.

MATRIX ELEMENTS OF AN EXTERNAL
PERTURBATION

The main problem in the compound state theory is the
calculation of effects of an external perturbation. Since ma-
trix elements of any single-particle operator can be expressed
in terms of elementary density matrix operatorsr̂ab5aa

†ab

which transfer the particle from the orbitalb to the orbital
a, the main interest is in statistical properties of matrix ele-
mentsrab . Below, we use a recent approach developed in
@9# ~see also the study of the Ce atom in@2#! where the
following expression for the mean square matrix elements
~MSME’s! jab

(n2n1)[r̄ab
(n2n1)u2 between compound states^n1u

and ^n2u has been derived:

jab
~n2n1!

5Qab(
r
wn1

~Er1vab!wn2
~Er ! ~7!

where vab5ea2eb and Qab5^n2un̂a(12n̂b)un2&. Here
the sum runs over many-body basis components withwn1
andwn2

being the weights of these components in the states

n1 andn2 @see Eq.~2!#. If we know the shape of the strength
function w, this sum can be replaced by an integral and
explicitly evaluated. In particular, whenw is of Breit-Wigner
type, the final expression for the MSME has also the Breit-
Wigner form ~see details in@2#!.

In order to check the accuracy of the above expression~7!

in the RTBI model, we have directly calculatedjab
(n2n1) for

a54, b55 ~transition from the ground state to the nearest
one!, and different values ofn1 andn2 . To reduce fluctua-
tions, an averaging over a number of realizations of the
Hamiltonian matrix has been done. The direct comparison
with the analytical prediction~7! shows a quite good agree-
ment. In particular, the positions of the maxima as well as
the widths ofjab

(n2n1) in dependence onn1 and n2 are well
described by~7!. However, quite unexpected deviations have
been discovered which were found to be generic in the
model. A typical example is given in Fig. 2 where a clear
difference is seen between the statistical approximation~7!
and numerical data. The absolute difference is maximal at
the center of thej dependence; however, in the tails the
relative difference is even larger. A thorough study of this
phenomenon~see details in@10#! has revealed a very intrigu-
ing fact: the origin of this effect is in the underlying corre-
lations induced by the two-body nature of the interaction.
Similar correlations were observed in the model of random
separable interaction@11,12#. Full analytical treatment of the
correlations for the RTBI model is given in@10#. In particu-
lar, for the tails the contribution of the correlation term
jcorr to the total MSME,j total5jcorr1jstat , has been esti-
mated as

R[
jcorr
jstat

52
~n22!~m2n21!~m2n12!

n~m2n!~m2n13!
~8!

wherejstat is very close to that given by the expression~7!.
In the maximum ofj, the estimate form2n@1 reads as

FIG. 2. Mean square matrix elementj calculated forn1555,
a54, andb55 as a function ofn2 . Averaging over 100 Hamil-
tonian matrices with different realizations of random two-body in-
teraction has been made. The dots correspond to the direct numeri-
cal computation; the solid line represents the statistical
approximation~7!.
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j total /jstat'222m/@n(m2n)#. The remarkable result is
that these correlations do not decrease with an increase of
number of particlesn and number of orbitalsm. Numerical
data for larger values ofn57 andm514 ~with N53432)
have confirmed this prediction.

ENHANCEMENT OF A WEAK PERTURBATION IN
CHAOTIC MANY-BODY SYSTEMS

The RTBI model allows for the study of a very important
effect, namely, the enhancement of a weak perturbationŴ,
which takes place in systems with chaotic compound states.
This effect is proportional to the mixing coefficient
h5^n1uŴun2&/D12 whereD125E12E2 is the spacing be-
tween the neighboring energy levels of compound states.
Since the spacings for strongly excited states of many-body
systems are exponentially small,D12;exp(2n), one could
expect strong enhancement of the perturbation in comparison
with the single-particle mixing defined by
hs5^auŴub&/(ea2eb). The possibility of the enhancement
in compound nuclei was pointed out in@13,14# and consid-
ered in detail in a recent review@12#. However, such non-
trivial effects as repulsion between energy levels and the
above discussed correlations may have strong influence on
the enhancement. Our preliminary results show that even for
four particles the enhancement in the RTBI model does exist.

CONCLUDING REMARKS

In this Brief Report we have analyzed the RTBI model
which, unlike conventional random matrix models, allows
for the study of many important problems related to the two-
body character of the interaction. As an example, the role of
interaction for the appearance of the Fermi-Dirac distribution
has been investigated for the parameters of Ce atom. It was

found that the two-body interaction gives rise to thermaliza-
tion and that the statistical effect of the interaction can be
imitated by an increase of temperature. The study of corre-
lations between occupation numbers has revealed sufficiently
weak correlations even for a small number (n54) of par-
ticles. This justifies the approximation of independent par-
ticles which is typically used in the description of complex
compound states. To describe the effect of spreading widths
of orbitals, the generalization of the Fermi-Dirac distribution
was suggested.

The numerical and analytical treatment has shown that the
statistical theory reproduces quite well the global structure of
matrix elements of an external perturbation between com-
pound states. On the other hand, underlying correlations
have been discovered which are induced by the two-body
character of the interaction, even if the latter is completely
random. This phenomenon results in serious deviations from
the statistical predictions for matrix elements between com-
pound states. At the moment, all consequences of these cor-
relations are still not understood; however, preliminary data
@15# show that they can lead to the so-called gross structure
~sharp peaks! in a cross section.

In conclusion, our results show that the TBRI model dis-
cussed above can be a very useful tool in the study of many
important problems of the statistical physics of complex
quantum systems.
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